If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2-2x-48=0
a = 35; b = -2; c = -48;
Δ = b2-4ac
Δ = -22-4·35·(-48)
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6724}=82$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-82}{2*35}=\frac{-80}{70} =-1+1/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+82}{2*35}=\frac{84}{70} =1+1/5 $
| 12xxx1/2=4(2x-3) | | 2y+12=2(2-3) | | 3p+p+0.5p=18 | | 12xx1/2=4(2x-3) | | 35x^2-2x-49=0 | | 12xx1/2=4(2x-3 | | 7a+5+8a=5–29 | | 8x^2+5x=3=7x | | 5/x+16=4 | | 2(3x-8)+5=8(6x-4)-6 | | 32x-77=155 | | 5/9x-160/9=0 | | 7x+2x2+1=x2-9 | | 83x-1=1 | | 6x-2=2(2x-1 | | 3=9(n-6) | | 6y-97=67 | | -20+m2+m=0 | | 11/x=3/6 | | 5(4x+4)=(3x-5)3 | | -7(v+10)-7v=-10 | | 5z+3=67 | | A^2-12a-48=0 | | x2+-10x+-128=0 | | 1.09^x=2 | | -7(v-9)=5+1 | | P(t)=6t^2+110t+3000 | | -7=18x+9x^2=0 | | 4y-19=111 | | 2/x-68=164 | | 4y-19=69 | | 7(x-3)=5(2x-3) |